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In recent years, considerable effort has been devoted to catalyticScheme 1. Proposed Route t0 B?-Amino Acids and Derivatives

asymmetric conjugate additions of dialkylzinc reagents to nitroalk- r'o No2 RZn_go - R

enest Significant progress has been made using Cu(l) catalysts with R o \H\/ \[(K/
phosphorus-based chiral ligands, cumulating enantioselectivities up R"=OH,H
to 96% for cyclic nitroalkenes as reported by Hoveydscyclic Ho\)\/

nitroalkenes, however, constitute a challenging class of substrates,

because of the much lower selectivities obtained so far. Furthermore, Scheme 2. Synthesis of Nitropropene Acetals

almost exclusively, BZn as an organometallic reagent has been O i) CHaNO,, t-BuOK

used: Methodologies that provide high enantioselectivities in this o U i) TFAA, EtaN _O_~NO, diol, BFzEt;0
1,4-addition are highly warranted because the produced nitroalkanes THF T EOo
have a wide range of applicatioh3his is due to the versatility of O 0 ;01 2

the nitro group, sometimes entitled a “chemical chamelédhgt

can be transformed into a range of other functional groups including \'/\/NOZ NO, \ NO,
amine, aldehyde, or acid moietiedVe envisioned that enantiose- m Ph‘L/
lective 1,4-addition to acetal substituted nitroalkéruesild provide 5,% 70% ,0%

an attractive route tg@?-amino acids and derivatives, which are
important building blocks in the synthesis of natural products, Table 1. Diethylzinc Additions to Nitropropene Acetals®

B-peptides, and pharmaceuticals (Schemé 1).

We wish to report here that by using phosphoramidite ligand OO
L1, developed in our laboratofyfor the first time, enantioselec- 0: P N
tivities up to the 98% level for acyclic nitroalkenes are obtained. O N A
Furthermore, the use of acyclic substrates with different alkylzinc OO h\ Ph\

reagents provides a catalytic enantioselective route to (functional- |_z (R=i-Pr)

ized) 2-amino aldehydes, acids, and alcohols. (SR.R)-L1 L3 (R=! Me) (R RyL4
Encouraged by the results obtained with our one-pot multisub- 1 mol% Cu(OTH), Et
strate screening procedure for copper-phosphoramidite catéflysts, Ro.__~._NO, +Etyzn 2Mol%L1-L4 o NO,
various acetal substituted nitropropenes were examined. The toluene , -45°C
RO 1a-d RO 2a-d

synthesis is based on a transacetalization of dimethoxynitropropene
(1a), prepared via a Henry reaction on multigram scale starting
with commercially available dimethoxyacetaldehyde (Scheme 2).  enty substrate ligand product yield (%)° ee (%)
Nitroalkeneslb and 1c were obtained in good yield; the (nonop-

i ' ! 10 1 la L1 2a 28 93
timized) low yield forld can be explained by the low solubility of 2 1a L2 2a 3 14
the diol under the reaction conditions. In preliminary experiments, 3 la L3 2a 25° 4
we screened four different copper-phosphoramidite catalysts, based 4 la L4 2a 27 87

. . T . . 5 1b L1 2b 72 91

on ligandsL1—L4, with respect to their ability to induce enantio- 6 1b L4 b 70 76
selectivity in the 1,4-addition reaction of diethylzinc with nitro- 7 1c L1 2c 79 92
propene acetalsa—d (Table 1). 8 lc L4 2c 74 79
9 1d L1 2d 72 8

As can be seen from entries—3 in Table 1, bulky chiral
sgbstltuents at the amine m0|ety.of the ligand are necessary to reach 2 Conditions: 1.0 mmol of.a—d, 1.2 equiv of E&Zn in 2 mL of toluene:
high ee, and comparison of entries 1,4, 5,6, and 7,8 showshat g reactions went to completion in 3 hisolated yield.c Nonoptimized
with (S-BINOL as the diol part, gives in all cases better results conditions; see Table 2 for optimized yiefiDetermined by chiral GC.
than bisphenol-based ligahd .° It is also found that 1 is able to ¢ Determined by chiral HPLC.
generate high ee values 90%) for nitroalkanes with acetals based were reacted with various alkylzinc reagents using 1 mol % of the
on methanolZa) and 2,2-dimethylpropanoR€). The use of acetals  copper-phosphoramidite catalyst based on ligahdTable 2).
based on pinacol2p) and 2,2-diphenylpropanold), the latter Under these optimized conditions, the readily accessible nitro-
being very successful in the conjugate addition to cyclopentene- propene acetdla proved to be the most suitable substrate resulting
3,5-dionel? leads to lower selectivities(90%). Under optimized in very high enantioselectivities with simple aliphatic dialkylzinc
reaction conditions, that is, at55 °C, and slower addition of the  reagents (entries 1,3,5). A functionalized zinc reagent can also be
dialkylzinc reagent (over 1 min), nitropropene acetbdsand 1c used, albeit with slightly lower selectivity (entry 6). We were
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Table 2. Conjugate Addition of Dialkylzinc Reagents to 1a and The practicality of this new catalytic route is demonstrated by (i)
a . . .
1 the synthesis o2e on gram scale by starting with 10 mmol b4,
1% Cu(OTf), R' resulting in yields ranging from 86 to 91%,and (ii) the few
RO~ NOz +Ryzn 2%L1 RO NO, efficient steps that are needed to obtain the correspoififiagnino
tol , -55°C i i i
RO 1a,c oluene RO 2ac,eh compounds (Scheme 3), in particular, the aldehydes which are

usually obtained via consecutive reduction and oxidation of the
acids!* Together with the rhodium-catalyzed asymmetric hydro-

yield e.e.

entry substrate  dialkylzinc  product (%)° (%)° genation of-dehydroamino acids using phosphoramidite ligands
1 1a Et,Zn 2a 78 96 reported recently by our grop poth kinds of-amino acids f§?-
% 10 ,I\EAtZZQ gc ;g gg and p3-substituted) can be obtained using the same class of
a e.ln (] idi i
2 fe MezZn 2 58 96 monodentate phosphoramidite ligands.
5 1a Bu,Zn 2g 75 95 Acknowledgment. This project was funded by the National
[¢] . . .
N Research School Combination Catalysis (NRSCC).
6 1a < OWZ" 2h 74 88 ysis ( )

N _ _ Supporting Information Available: Experimental procedures and
@ Conditions: 1.0 mmol ofa,1c, 1.2 equiv of BZn in 2 mL of toluene; spectral and analytical data for reaction products (PDF). This material

balllsﬁ:ghogise;’éirg ;?ercnc;mglgtllac;/ncﬁi?arég entries; 34 for all others). is available free of charge via the Internet at http:/pubs.acs.org.
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